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We consider game problems in which the payoff is some function of the terminal 

state of a conflict-controlled system. We state sufficient conditions for the exis- 

tence of optimal minimax and maximin strategies of the players. We show that 

optimal strategies exist if the corresponding Bellman equation has a solution. 

We consider the question of the existence of optimal strategies both in the class 

of deterministic as well as in the class of mixed strategies. The reasoning pres- 

ented is based on the results in [l, 21. The questions considered border on the 

investigations presented in [ 2 - 51. 

1, Let the motion of a conflict-controlled system be described by the nonlinear 

equation dx’dt = f (t, s, II, zl) (1.1) 

Here x is the n-dimensional phase vector, ~1 and c are the controls of the first and 

second players, respectively, ,i (1, J. u, 1’) is a continuous vector-valued function sat- 

isfying a Lipschitz condition in x‘. The realizations II [II and l’ [f] of the controls. ~1 , 
and u are constrained by the conditions l! I!\ Er I-’ (t) and v ItI E Q (f), where 1’ ([) 

and Q (t) are closed. bounded and convex sets in the corresponding vector spaces, var- 

ying continuously with 1. We assume that the right-hand side of system (1.1) satisfies 

the condition 

The payoff is the quantity 1~’ (X IS])? defined at the final instant t = 6 by the position 

2 [ti] realized. The function U; (x) is assumed continuous. Thus, we are considering 

a game with a fixed final instant t = 6. The first player strives to minimize the quan- 

tity W (2 Ifi]) under the most adverse behavior of the second player. The second player’s 

problem is to ensure a completion of the game with the largest possible value of the 

payoff. 
We emphasize that the controls b and 1’ should be formed by a feedback rule in order 
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that their realized values u ft] and u It] be determined at each instant t on the basis 
of the position 0, z [rl} realized at this instant. 

In order to include discontinuous control laws and the slipping modes generated by 

them we introduce the definitions of admissible strategies of the first and second players 
whose classes we denote U, and V, respectively. Let a certain set u (t, 5) of r-dim- 

ensional vectors u be associated with each position {t, Z} . We assume that for any 
{& 5) the set u (t, LC) is closed and satisfies the inclusion U (t, 5) c P (t), while 

the ambiguous vactor-valued function U = U (t, z) is upper-semicontinuous relative 
to inclusion with respect to t and x. The latter requirement means that for each posit- 

ion {t*, % > and for any number a > 0 we can find fi > 0 such that for all z and 
& satisfying the inequalities 1 =f - & f \c @. 11 x - x*/f < fl, there holds the inclu- 

sion U (t, s) c U, (t*, r*), where U, (t, x) is the a-neighborhood of set U (S, z). 
We say that the functions U = U (t, ZC) prescribe the admissible strategies of the first 
player. The class of functions V = V (t, x) which prescribe the admissible strategies 
of the second player is defined analogously. 

Let us determine the motions of system (1.1). generated by the pair of strategies 

u L u (4 2) E u,, v,-+ V (t, 2) E vt 

Here the symbol + denotes correspondence between the strategies U E Ur and ‘v E 

E VI and the functions U = U (t, x) and V = V (t,s) prescribing these strategies. 
By $’ (& 2, U, v) we denote the convex hull of all vectors of the form f (t, x, u, u), 

where uE U(t,x),v~ F’(t,z). Every absolutely continuo~ vector-valued fur&- 

ion 2 [t], t > t,, which for almost all t > t, satisfies the condition 

dx I dt E F (8, x it], U, V), 2 [toI = zo 

is called a motion of system (LX), 2 [t] = x [t; t,, x,,, U, V], generated by the 
pair of strategies U +U(t, X) E II,, V +- V (t, z) E V,. The strategies U, t 

+- P (t), V, + Q (t) are called the trivial strategies of the first and second players, 
respectively. 

Note that the set of trajectories x [tl = 5 It; to, z ,,, u,, Y,], where U, is some strategy 

of the first player, contains any motion t It1 = z It; tp, zO, U,, B],where V is an arbi- 
trary strategy of the second player. An analogous circumstance obtains for the set of 

motions 2 ftl = z it; to, z,, U,, V,].The existence of motions E [t] = z It; to, 50, CT, J’l 
prolongable upto the instant f = 6 follows from the results in the theory of differential 
equations with a discontinuous right-hand side [ 1% 

2, We consider the solution of game minimax maximin problems for player strategy 
classes U, and V,. A strategy satisfying the condition 

minu max,w (Z [6; ~o,%J, U, V71) = max, w (z [ft to, 50, U”, V,l) (2.4) 

is called a minimax strategy of the first player, U” + U (t, z) E U, . Here, in the 
first case, the maximum is computed over all points z [61=x 16; to, 20, U, V=l, 
while in the second case, over all points z [9] = x [S; to, x0, U”, VT]. Analogously, 

the second player’s maximin strategy is given by the relation 
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The following assertion is valid. 
Theorem 1. Let there exist a continuo~ly-differentiable function Y (t, S) which 

for all t and X satisfies the equation 

min, max, 
( 

a (4 4 
-+grad,‘r(t,z)f(t,s,u,u))U v=o at (2.3) 

(u E p (% v E Q(l)‘ to < 1 < 6) 
and the boundary condition 

r (6, $1 = w (X Ml) f2.4) 

Let u” (t, 5) be the set of vectors u0 resulting in the minimum in (2.3). Then the 
strategy U” f U” (t, 5) E U, is the first player’s minimax strategy. 

Proof. We show first of all that U + U” (t, I) belongs to the set U,. The condition 
U’ k 3 C p (6 follows from the definition of the function U” :y U” (t, x). Let us verify 
the fulfillment of the semi~ontin~~ condition for the function U” := U- (t, x). We ass- 

ume the contrary, i.e., let there exist a pointP* ~= (i,, z*), a sequence pk = ftg, 5k) 
(k = 1, 2, . ..) converging to the point p*, and a number a: > 0 such that the sets ci” (tk, 
zk) are not contained in the set U; (t*, r*) for all k = 1, 2, . . . . Then there exists the 

sequence (I ELM) 

“& E U” (“c* “J’ U& e U,O (f*. 5*) (k = 1,2,. . .) 

The sets U” (tk, xk) are equibounded and, therefore, from the sequence uh we can pick 

out a convergent subsequence which we denote, for simplicity, as before by uk. Let 

[tjE - 1$ as k - fi Obviously, 
U* @ II,” (t*, z*) (2.5) 

* 

On the other hand, the relation 

max, s (Ph.) ! (pk’ Uk’ ?j < innYn *’ (Pk) f (Pk, u. ‘) 

2, E Q (tkL s (PJ = @id,’ T (L x It])) tk, xh_ 

is fulfilled for any element u c 1’ (t,,) . We can show that the function 

g (U, P,) = milx, S (Pk) I (Pk, ‘4, vf, v E Q Ok) 

(2.6) 

is continuous relative to {(I, pfi). Therefore, by passing to the limit in (2.6) as k - 00, 
we obtain 

maxv s (pJ j (p*, L/*, 2‘) < m;lxu s (P*) i (P*, u, 2') 11 E Q (t*) 

where u is an arbitrary element of set I> (t.J. Consequently,n, E U’ it*, z*). which 
contradicts (2.5). The contradiction proves the semicontinuit~ of the fun&ion u” r 
= u” (t, 5). Ttte closedness of the sets u” (t, r) is proved in an analogous manner. 

Let us now prove that the strategy constructed is minimax. At first we show that for 

any motion z It1 t It; to* so, li , VT1 the condition 

(11’ (t. .r 111, ! dt < 0 (2.7) 

is fulfilled for almost all t E ft,, @f . Here the derivative is computed along the motion 
5 ItI. The existence of this derivative for almost all 1 > tG follows from the continuous 
differentiability of the function y (1, z) and the absolute continuity of the motions x [ti. 
The validity of the inequality 

w + grad,’ ‘i (f, z [t]) f (t, z [1), u*, V) <o (2.X) 
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for any vectors u” E u” 0, z itI)9 IJ E Q 0). follows from relation (2.3) and from the 

definition of the set U” (t, z) 
Let us show that from (2.8) there follows the relation 

a+ + grad,’ T (t, z It]) I [t] < 0 

for any vector f [t] E F (t, z [t], U”, V,). By the Carthdodory 
f ltl from F (t, z ltl, U”, I’%‘,, can be represented in the form 

n+i 

(2.9) 

theorem. any element 

(2.10) 

Therefore, the validity of inequality (2.9). from which follows inequality (2.7). yields 

from relations (2.8) and (2.10). Thus, inequality (2.7) is proven. From this inequality 
we obtain that the strategy u” + U” (t, X) guarantees the first player that the game term- 

inates with a payoff satisfying the inequality 

w (z ISI) < y (to, 20) (2.11) 

Let us show that the result guaranteed the first player by strategy U” is the best one 
among all those which may be ensured him by a strategy U from the class U, being 
considered. To do this it is sufficient to prove the following: whatever be the strategy 

U, + U, (t, z) E U, of the first player, among the motions z [tl = 5 It; to, 50. u,, VT1 

we can find a motion z* [tl for which the inequality 

dy (6 z* ItI) / dt a 0 (2.12) 

is fulfilled for almost all t (to d t < 6) . From this inequality it follows that y (19, z* 

[61) > Y (to. r,).Consequently, the strategy U, cannot guarantee the first player a game 
termination with a payoff less than y (to, x0). 

Let us prove the proposition stated above. We construct the desired motion Q [tl as 

a limit transition from Euler polygonal lines zk [tl (k = 1, 2, . ..).which we define in 
the following way. We divide the interval [to, 61 into k semi-intervals [to -/- iAk, 

to + (i + 1) Ak), where AK = (6 - to) /k (k -= 1, 2, . ..). At the instant ti=t,+ iA, we 

choose a certain vector ui E U,(ti, zk [ ti]) and we select a vector Vi so as to satisfy 

the inequality 
a7 (ti i: [‘i’) + gradX’ 7 (ti, zk [ti]) f (tip xx [tJ* ui’ vi) >,O 

The possibility of selecting such a vector vi follows from relation (2.7). The constant 

controls “i = u It], z)i = v [t], where t E [to + ih,, to + (i + l)AJ, determine motions 
of system (1.1) upto the instant ti+r =t,+ (;-I-i) AIM. At the instant t = t;+l we repeat the 

above-described procedure for choosing the players’ controls. Next, from the sequence 

of Euler polygonal lines zk [tJ we choose a certain convergent subsequence. The limit 
of this sequence is denoted by X* [t]. By means of the reasoning used to prove the exist- 
ence theorems for solutions of differential equations in contingencies [I, 21, we can 

show that the constructed trajectory I* [tJ is one of the motions x It] = x it; to, xol 

u *, VT]. Furthermore, from the construction of the polygonal lines xk it] it follows 
that inequality (2.12) holds for the motion constructed; Thus, we have proven that the 
strategy u” +-p (t, x) guarantees the first player a game termination with a payoff 
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satisfying the inequality y (f_t, t [ft]) < Y (to, zO), and this result is the best one for the 
strategy class being considered. 

The next theorem can be proved in analogous fashion. 
Theorem 2. Let there exist a continuously-differentiable function r* (t, 5) which 

for all t and LZ satisfies the equation 

max, min, ’ “* (r’ ‘) + grad,‘r*(t, z)f (t, 3, U, u))~ u = 0 
\ at 

(2.13) 

(u E P (11, v E Q(t), to Q t < ft) 
and the boundary condition 

r* (6, X) = W (5 H-v) (2.14) 

Let v” (t, z) be the set of vectors uc resulting in the maximum in (2.13). Then the 
strategy v -+ v” (t, a$ is the second player’s maximin strategy. 

Theorems 1 and 2 give a strict interpretation of the considerations presented briefly 

in [3] and answer the question posed in [S]. It is not difficult to prove the validity of 

the following theorem by using the theorems presented above. 
Theorem 3. Let there exist a continuously-differentiable function ‘I’ (t, 5) 

satisfying the equation 
min, max, w + grad,’ y (t, 5) f (t, 5, u, u)) = (2.15) 

= max, min, 
( 

w + grad,’ r (t, z) f (t, 2, U, u)) = 0 

and the boundary condition 

7, (6, 5) = w (4 (2.16) 

Let U” (t, x), V” (t, x) b e sets of all vectors u E P (1), u E Q (t) resulting in the 
minimax and the maximin in (2.15). Then 

U” + fCP(t, 2) E ut, V” + v” (4 4 E v,, 

and these strategies are the minimax and the maximin strategies of the first and second 

players, respectively, and moreover the strategy pair { u” P}suppues the saddle point 

of the game being considered. 

3. Sufficient conditions for the existence of the players’ optimal strategies in the 
strategy classes Utand VI, have been derived above. Let us describe other wider stra- 
tegy classes u, and Vs of the first and second players, respectively. Sufficient exist- 

ence conditions for optimal strategies will be considered for such classes too. The dist- 
inction of the strategies U E U, (V E V,) fr om the strategies U E U, (V E V,) 
considered above is that the functions U = U (t, x), (T/’ = V (t, r)) associate with 
the position {t, X} of the game not a point set from P (t) (Q (t)) but a certain set 
of probability measures given on P (t) (Q (t)). Here the functions U = U (t, z), 
V = V (t, z) should satisfy the condition of weak upper-semicontiduity r’elative to 
inclusion with respect to the variable P = {t, S}. This condition means the following. 
Let there be given a sequence of probability measures pk (du) (vk (do)) given on the 
set P (th) (Q (th)) . Let kLk (““) ET1 (tk, zh) (vk (d@ E V (lh, z,+l) (k = 1, 2, . ..) and 
let {l,,s~.t --’ {L. ,rxI, while the seq1lenc.e of probability measures :I.;~ (~!uJ (Yap (,i: ,!I 
converges weakly to the probahilit~ 1 zieasure px.(d2) (2._(di.j1 given <~iil tile ,:t:;: i’ :‘,.i 
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P? ft*)f. Then, the inclusion &d4 E U (f*, 4 (y&W E TJ t&, z*)) ought to be 
fulfilled. Recall that a sequence of probability measures pk (du) converges weakly to 
measure ft* (du), if the relation 

J g @) pk (du) --* s g @) p* (dU) 

holds for any continuous function g (u) . 

For the determination of the motions 2 [t] =; 5 [t; t,, rO, u, V] generated by 
strategies U E lJz, V E v,, the set F (t, 5, U, V) is defined as the convex hull of 

the set of all vectors,f of the form 

f = Sj f (C .2~, IL, 0) P (du) v (do) 

(CL (W E u (t, a% v (~~~ E t’ (t, a$) (3.1) 

The trivial strategies U,, V, are prescribed by the functions U, = U, (t), V, = 
= V, (t), which associate with the variable t the set of all probability measures !+I (du), 

v (dv) given on the setsp (t) 0 (t) respectively. The minimax and the maximin 
strategies u” +- U” (t, x), v” .+- V” (t, -2) are given by the conditions (2.X), (2.2), 
and the sets U” (t, X) and V” (t, x) are considered from the players’ strategy classes 

U, and V, respectively. The following assertion is valid, 
Theorem 3.1. Let there exist a continuously differentiable function 7 = 7 (tt X) 

satisfying the equation 

and the boundary condition 

7 (3, 5) = w(x) (3.3) 

Here the minimum and the maximum are computed over the set of probabilitv measures 
p (du) given on P (t) and v (du) given on Q (t), respectively. Let u” (t, CC), 
V” (t, Z) be sets of probability measures p (du), Y (du) given on P (t), Q (t), which 

supply the saddle point [S] 

min, max, 
ss 

grad,‘7 (t, 5) f (t, 5, u, n) P (du) y (W = (3.4) 

= maxv min,, grad,’ 7 (t, x) f (4 5, u, ~1 P fd4 y @W 

Then the strategies i7“ + u” (t, z) E U,, V" -+ V” (t, LE) E V, are the minimax 
and the maximin strategies, respectively. The strategy pair (U*, V”> supplies the saddle 
point of the game being considered. 

The proof of this theorem is carried out in just the same way as for the preceding 

Theorems. Note that in the formulation of Theorem 3.1 we have not assumed the exist- 
ence of saddle point (3,4),Fromthe results in game theory [6] it follows that such a saddle 
point (3.4) always exists. 

4. In conclusion we present a simple example illustrating the theorems derived. Let 
the motion of a conflict-controlled object be described by the equation 

& f dt = uv, 5 (0) = 0 

where z is a scalar, and the controls u and v may take two values: +I and -1, As 
the payoff we choose the quantity y (6, Z) = x @].The game is played on a specified 
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time interval t E [9, 11. 
We first consider the minimax problem in the strategy class U,. We set up the Bell- 

man equation 
min, max, 

( 
ar (:. 2) _ 

at 

+ 87 (6 5) 
- I- dX 

d- 0 

under the condition y (1, z) = z. It is not difficult to compute the minimax on the left- 
hand side of this equation. We obtain 

Y (13 x) --= 3 

The function Y (6 2) = x - t + 1 satisfies this equation 
By virtue of Theorem 1 we now obtain that the result 

y (to, 50) = zo - t(t + 1 = 1 

and the boundary condition. 

is the best one for the first player. Analogously we can show that the best result for the 
second player is Y (to, IO) -- I0 + to - 1 = -1. 

Let us now consider the minimax and the maximin problems for the strategy classes 

ir, and V,. We show that in the case being considered the function JJ (t, x) = x 
satisfies Eq, (3.2) and boundary condition (3.3). We have 

ar (t* 2) min, max, ~ uvp (ctu) Y (dv) = 
dt 

= min,, max, 
f S UV~ (du) v (&) = minP max, J up(&) J .vfdv)= 

= max, min, J up (du) J Dv (dv)=O 

Recall that here k (du) and v (do;) are probability measures given on a set consisting 

of the two points -t-i and -1. The validity of the equality 

.Ts 
uvp(du)v(dv)= J up(&) J vv(dv) 

follows from Fubini’s theorem [7]. By PO (du), v” (du) we denote the measures supplying 
the saddle point (3.4). It is not difficult to note that 

$ (u : g = +l) = pe (u : u = -1) = ‘/* 

yo (u : v = +I) = v” (v: 1, = --1) = ‘is 

By virtue of Theorem 3.1 we obtain that in the example being considered there exists 
in the strategy classes U, and V, a value of the game equal to the amount Y (to, $0) = 
= x0 = 0. Thus, in this example a value of the game does not exist in the strategy 
classes U, and V, , and the minimax and maximin payoffs are equal $ 1 and -1 

respectively. In the strategy classes U,, Va a value of the game exists which is equal 
to zero. 

The author thanks N. N, Krasovskii for posing the problem and for his attention to 
the work and also acknowledges A. I. Subbotin for a discussion of the paper. 
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In [l - 31 the proof was given of the reduction principle in stability theory when 
investigating critical cases. In the present paper the reduction principle is proved 

for nearly-critical cases [4]. The stability problem in one essentially singular 
case is solved. The stability of a pitch gyro is investigated. 

1. We consider a real autonomous system of differential equations of a perturbed 
motion of the form 

.z,* = jj..,X, +X,(.X) (v=l,..., r, x321,..., zr) (1.1) 
I=1 

Here X, are holomorphic functions in the region 

zra+. . . +z,a<’ (1.2) 

whose expansions do not contain terms of less than second order. H is some finite posi- 
tive number. We assume that the characteristic equation of system (1.1) has Q roots 
with negative real parts, m zero roots, and p roots with real parts which are small in 

absolute value. We remark that any system with an arbitrary number of zero and pure- 
imaginary roots and roots with small positive real parts can be reduced to such a form. 

Under these conditions system (1.1) can be transformed by means of linear substitut- 
ions to the form 

Ys’ = 2 g,kYk + y, (Y, z) 
k=l 

6 = h + . . . + k,, s = 1, . . . . n 

zj’ = i p?iZi + 5 Aj(*‘Y” + Zj (!I, Z) 

i=i,...,q, n=m+p 
(1.3) 

n-\q=r, yk = ylki . . . Y> 

i=l s>2 


